AG-Monien Graph Collection, Ralf Diekmann and Robert Preis                     
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html
                                                                               
A collection of test graphs from various sources.  Many of the graphs          
include XY or XYZ coordinates.  This set also includes some graphs from        
the Harwell-Boeing collection, the NASA matrices, and some random matrices     
which are not included here in the AG-Monien/ group of the UF Collection.      
In addition, two graphs already appear in other groups:                        
                                                                               
   AG-Monien/big : same as Nasa/barth5, Pothen/barth5 (not included here)      
   AG-Monien/cage_3_11 : same as Pajek/GD98_c (included here)                  
                                                                               
The AG-Monien/GRID subset is not included.  It contains square grids that      
are already well-represented in the UF Collection.                             
                                                                               
Six of the problem sets are included as sequences, each sequence being         
a single problem instance in the UF Collection:                                
                                                                               
   bfly:  10 butterfly graphs 3..12                                            
   cage:  45 cage graphs 3..12                                                 
   cca:   10 cube-connected cycle graphs, no wrap                              
   ccc:   10 cube-connected cycle graphs, with wrap                            
   debr:  18 De Bruijn graphs                                                  
   se:    13 shuffle-exchange graphs                                           
                                                                               
Problem.aux.G{:} are the graphs in these 6 sequences.  Problem.aux.Gname{:}    
are the original names of each graph, and Problemm.aux.Gcoord{:} are the       
xy or xyz coordinates of each node, if present.                                
                                                                               
Graphs in the cage sequence:                                                   
                                                                               
     1 : cage_3_5     :      10 nodes      15 edges      30 nonzeros           
     2 : cage_3_6     :      14 nodes      21 edges      42 nonzeros           
     3 : cage_3_7     :      24 nodes      36 edges      72 nonzeros           
     4 : cage_3_8     :      30 nodes      45 edges      90 nonzeros           
     5 : cage_3_9.1   :      58 nodes      87 edges     174 nonzeros           
     6 : cage_3_9.2   :      58 nodes      87 edges     174 nonzeros           
     7 : cage_3_9.3   :      58 nodes      87 edges     174 nonzeros           
     8 : cage_3_9.4   :      58 nodes      87 edges     174 nonzeros           
     9 : cage_3_9.5   :      58 nodes      87 edges     174 nonzeros           
    10 : cage_3_9.6   :      58 nodes      87 edges     174 nonzeros           
    11 : cage_3_9.7   :      58 nodes      87 edges     174 nonzeros           
    12 : cage_3_9.8   :      58 nodes      87 edges     174 nonzeros           
    13 : cage_3_9.9   :      58 nodes      87 edges     174 nonzeros           
    14 : cage_3_9.10  :      58 nodes      87 edges     174 nonzeros           
    15 : cage_3_9.11  :      58 nodes      87 edges     174 nonzeros           
    16 : cage_3_9.12  :      58 nodes      87 edges     174 nonzeros           
    17 : cage_3_9.13  :      58 nodes      87 edges     174 nonzeros           
    18 : cage_3_9.14  :      58 nodes      87 edges     174 nonzeros           
    19 : cage_3_9.15  :      58 nodes      87 edges     174 nonzeros           
    20 : cage_3_9.16  :      58 nodes      87 edges     174 nonzeros           
    21 : cage_3_9.17  :      58 nodes      87 edges     174 nonzeros           
    22 : cage_3_9.18  :      58 nodes      87 edges     174 nonzeros           
    23 : cage_3_10.1  :      70 nodes     105 edges     210 nonzeros           
    24 : cage_3_10.2  :      70 nodes     105 edges     210 nonzeros           
    25 : cage_3_10.3  :      70 nodes     105 edges     210 nonzeros           
    26 : cage_3_11    :     112 nodes     168 edges     336 nonzeros           
    27 : cage_3_12    :     126 nodes     189 edges     378 nonzeros           
    28 : cage_3_13    :     272 nodes     408 edges     816 nonzeros           
    29 : cage_3_14    :     406 nodes     609 edges    1218 nonzeros           
    30 : cage_3_15    :     620 nodes     930 edges    1860 nonzeros           
    31 : cage_4_5     :      19 nodes      38 edges      76 nonzeros           
    32 : cage_4_6     :      26 nodes      52 edges     104 nonzeros           
    33 : cage_4_7     :      76 nodes     152 edges     304 nonzeros           
    34 : cage_4_8     :      80 nodes     160 edges     320 nonzeros           
    35 : cage_5_5     :      30 nodes      75 edges     150 nonzeros           
    36 : cage_5_6     :      42 nodes     105 edges     210 nonzeros           
    37 : cage_6_6     :      62 nodes     186 edges     372 nonzeros           
    38 : cage_7_5     :      50 nodes     175 edges     350 nonzeros           
    39 : cage_8_5     :      94 nodes     376 edges     752 nonzeros           
    40 : cage_8_6     :     114 nodes     456 edges     912 nonzeros           
    41 : cage_9_5     :     118 nodes     531 edges    1062 nonzeros           
    42 : cage_9_6     :     146 nodes     657 edges    1314 nonzeros           
    43 : cage_10_6    :     182 nodes     910 edges    1820 nonzeros           
    44 : cage_12_6    :     266 nodes    1596 edges    3192 nonzeros           
    45 : cage_14_6    :     366 nodes    2562 edges    5124 nonzeros           
                                                                               
The primary graph (Problem.A) in this sequence is the last graph               
in the sequence.