AG-Monien/cage

cage graph sequence
Name cage
Group AG-Monien
Matrix ID 2436
Num Rows 366
Num Cols 366
Nonzeros 5,124
Pattern Entries 5,124
Kind Undirected Graph Sequence
Symmetric Yes
Date 1998
Author R. Diekmann, R. Preis
Editor R. Diekmann, R. Preis
Structural Rank
Structural Rank Full
Num Dmperm Blocks
Strongly Connect Components 1
Num Explicit Zeros 0
Pattern Symmetry 100%
Numeric Symmetry 100%
Cholesky Candidate no
Positive Definite no
Type binary
SVD Statistics
Matrix Norm 1.400000e+01
Minimum Singular Value 3.605551e+00
Condition Number 3.882901e+00
Rank 366
sprank(A)-rank(A)
Null Space Dimension 0
Full Numerical Rank? yes
Download Singular Values MATLAB
Download MATLAB Rutherford Boeing Matrix Market
Notes
AG-Monien Graph Collection, Ralf Diekmann and Robert Preis                     
http://www2.cs.uni-paderborn.de/fachbereich/AG/monien/RESEARCH/PART/graphs.html
                                                                               
A collection of test graphs from various sources.  Many of the graphs          
include XY or XYZ coordinates.  This set also includes some graphs from        
the Harwell-Boeing collection, the NASA matrices, and some random matrices     
which are not included here in the AG-Monien/ group of the UF Collection.      
In addition, two graphs already appear in other groups:                        
                                                                               
   AG-Monien/big : same as Nasa/barth5, Pothen/barth5 (not included here)      
   AG-Monien/cage_3_11 : same as Pajek/GD98_c (included here)                  
                                                                               
The AG-Monien/GRID subset is not included.  It contains square grids that      
are already well-represented in the UF Collection.                             
                                                                               
Six of the problem sets are included as sequences, each sequence being         
a single problem instance in the UF Collection:                                
                                                                               
   bfly:  10 butterfly graphs 3..12                                            
   cage:  45 cage graphs 3..12                                                 
   cca:   10 cube-connected cycle graphs, no wrap                              
   ccc:   10 cube-connected cycle graphs, with wrap                            
   debr:  18 De Bruijn graphs                                                  
   se:    13 shuffle-exchange graphs                                           
                                                                               
Problem.aux.G{:} are the graphs in these 6 sequences.  Problem.aux.Gname{:}    
are the original names of each graph, and Problemm.aux.Gcoord{:} are the       
xy or xyz coordinates of each node, if present.                                
                                                                               
Graphs in the cage sequence:                                                   
                                                                               
     1 : cage_3_5     :      10 nodes      15 edges      30 nonzeros           
     2 : cage_3_6     :      14 nodes      21 edges      42 nonzeros           
     3 : cage_3_7     :      24 nodes      36 edges      72 nonzeros           
     4 : cage_3_8     :      30 nodes      45 edges      90 nonzeros           
     5 : cage_3_9.1   :      58 nodes      87 edges     174 nonzeros           
     6 : cage_3_9.2   :      58 nodes      87 edges     174 nonzeros           
     7 : cage_3_9.3   :      58 nodes      87 edges     174 nonzeros           
     8 : cage_3_9.4   :      58 nodes      87 edges     174 nonzeros           
     9 : cage_3_9.5   :      58 nodes      87 edges     174 nonzeros           
    10 : cage_3_9.6   :      58 nodes      87 edges     174 nonzeros           
    11 : cage_3_9.7   :      58 nodes      87 edges     174 nonzeros           
    12 : cage_3_9.8   :      58 nodes      87 edges     174 nonzeros           
    13 : cage_3_9.9   :      58 nodes      87 edges     174 nonzeros           
    14 : cage_3_9.10  :      58 nodes      87 edges     174 nonzeros           
    15 : cage_3_9.11  :      58 nodes      87 edges     174 nonzeros           
    16 : cage_3_9.12  :      58 nodes      87 edges     174 nonzeros           
    17 : cage_3_9.13  :      58 nodes      87 edges     174 nonzeros           
    18 : cage_3_9.14  :      58 nodes      87 edges     174 nonzeros           
    19 : cage_3_9.15  :      58 nodes      87 edges     174 nonzeros           
    20 : cage_3_9.16  :      58 nodes      87 edges     174 nonzeros           
    21 : cage_3_9.17  :      58 nodes      87 edges     174 nonzeros           
    22 : cage_3_9.18  :      58 nodes      87 edges     174 nonzeros           
    23 : cage_3_10.1  :      70 nodes     105 edges     210 nonzeros           
    24 : cage_3_10.2  :      70 nodes     105 edges     210 nonzeros           
    25 : cage_3_10.3  :      70 nodes     105 edges     210 nonzeros           
    26 : cage_3_11    :     112 nodes     168 edges     336 nonzeros           
    27 : cage_3_12    :     126 nodes     189 edges     378 nonzeros           
    28 : cage_3_13    :     272 nodes     408 edges     816 nonzeros           
    29 : cage_3_14    :     406 nodes     609 edges    1218 nonzeros           
    30 : cage_3_15    :     620 nodes     930 edges    1860 nonzeros           
    31 : cage_4_5     :      19 nodes      38 edges      76 nonzeros           
    32 : cage_4_6     :      26 nodes      52 edges     104 nonzeros           
    33 : cage_4_7     :      76 nodes     152 edges     304 nonzeros           
    34 : cage_4_8     :      80 nodes     160 edges     320 nonzeros           
    35 : cage_5_5     :      30 nodes      75 edges     150 nonzeros           
    36 : cage_5_6     :      42 nodes     105 edges     210 nonzeros           
    37 : cage_6_6     :      62 nodes     186 edges     372 nonzeros           
    38 : cage_7_5     :      50 nodes     175 edges     350 nonzeros           
    39 : cage_8_5     :      94 nodes     376 edges     752 nonzeros           
    40 : cage_8_6     :     114 nodes     456 edges     912 nonzeros           
    41 : cage_9_5     :     118 nodes     531 edges    1062 nonzeros           
    42 : cage_9_6     :     146 nodes     657 edges    1314 nonzeros           
    43 : cage_10_6    :     182 nodes     910 edges    1820 nonzeros           
    44 : cage_12_6    :     266 nodes    1596 edges    3192 nonzeros           
    45 : cage_14_6    :     366 nodes    2562 edges    5124 nonzeros           
                                                                               
The primary graph (Problem.A) in this sequence is the last graph               
in the sequence.