Cylshell/s3rmt3m3

FEM, cylindrical shell, graded tri. mesh w/ 1666 triangles. , R/t=1000
Name s3rmt3m3
Group Cylshell
Matrix ID 1611
Num Rows 5,357
Num Cols 5,357
Nonzeros 207,123
Pattern Entries 207,695
Kind Structural Problem
Symmetric Yes
Date 1997
Author R. Kouhia
Editor R. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, R. Barrett, J. Dongarra
Structural Rank 5,357
Structural Rank Full true
Num Dmperm Blocks 1
Strongly Connect Components 1
Num Explicit Zeros 572
Pattern Symmetry 100%
Numeric Symmetry 100%
Cholesky Candidate yes
Positive Definite yes
Type real
SVD Statistics
Matrix Norm 9.598608e+03
Minimum Singular Value 3.998353e-07
Condition Number 2.400640e+10
Rank 5,357
sprank(A)-rank(A) 0
Null Space Dimension 0
Full Numerical Rank? yes
Download Singular Values MATLAB
Download MATLAB Rutherford Boeing Matrix Market
Notes
%                                                                              
%FILE  s3rmt3m3.mtx                                                            
%TITLE Cyl shell R/t=1000 grad trian mesh 1666 stab MITC3 elem with drill rot  
%KEY   s3rmt3m3                                                                
%                                                                              
%                                                                              
%CONTRIBUTOR Reijo Kouhia (reijo.kouhia@hut.fi)                                
%                                                                              
%BEGIN DESCRIPTION                                                             
% Matrix from a static analysis of a cylindrical shell                         
% Radius to thickness ratio R/t = 1000                                         
% Length to radius ratio    R/L = 1                                            
% One octant discretized with graded triangular mesh (1666 elements)           
% element:                                                                     
% facet-type shell element where the bending part is formulated                
% using the stabilized MITC theory (stabilization paramater 0.4)               
% the membrane part includes drilling rotations using                          
% the Hughes-Brezzi formulation with (regularizing parameter = G/1000,         
% where G is the shear modulus)                                                
% full 3-point integration                                                     
% --------------------------------------------------------------------------   
% Note:                                                                        
% The sparsity pattern of the matrix is determined from the element            
% connectivity data assuming that the element matrix is full.                  
% Since this case the  material model is linear isotropically elastic          
% there exist some zeros.                                                      
% Since the removal of those zero elements is trivial                          
% but the reconstruction of the current sparsity                               
% pattern is impossible from the sparsified structure without any further      
% knowledge of the element connectivity, the zeros are retained in this file.  
% ---------------------------------------------------------------------------  
%END DESCRIPTION                                                               
%                                                                              
%