GHS_psdef/s3dkt3m2
FEM, cylindrical shell, 150x100 tri. mesh, R/t=1000
| Name | s3dkt3m2 | 
| Group | GHS_psdef | 
| Matrix ID | 1276 | 
| Num Rows | 90,449 | 
| Num Cols | 90,449 | 
| Nonzeros | 3,686,223 | 
| Pattern Entries | 3,753,461 | 
| Kind | Structural Problem | 
| Symmetric | Yes | 
| Date | 1997 | 
| Author | R. Kouhia | 
| Editor | R. Boisvert, R. Pozo, K. Remington, B. Miller, R. Lipman, R. Barrett, J. Dongarra | 
 
 
| Structural Rank | 90,449 | 
| Structural Rank Full | true | 
| Num Dmperm Blocks | 1 | 
| Strongly Connect Components | 1 | 
| Num Explicit Zeros | 67,238 | 
| Pattern Symmetry | 100% | 
| Numeric Symmetry | 100% | 
| Cholesky Candidate | yes | 
| Positive Definite | yes | 
| Type | real | 
 
 
| Download | MATLAB
Rutherford Boeing
Matrix Market | 
| Notes | 
%                                                                              
%FILE  s3dkt3m2.mtx                                                            
%TITLE Cyl shell R/t=1000 unif 150x100 triang mesh DKT elem with drill rot     
%KEY   s3dkt3m2                                                                
%                                                                              
%                                                                              
%CONTRIBUTOR Reijo Kouhia (reijo.kouhia@hut.fi)                                
%                                                                              
%BEGIN DESCRIPTION                                                             
% Matrix from a static analysis of a cylindrical shell                         
% Radius to thickness ratio R/t = 1000                                         
% Length to radius ratio    R/L = 1                                            
% One octant discretized with uniform 150 x 100 triangular mesh                
% element:                                                                     
% facet-type shell element where the bending part is formulated                
% using the stabilized MITC theory (stabilization paramater 0.4)               
% the membrane part includes drilling rotations using                          
% the Hughes-Brezzi formulation with (regularizing parameter = G/1000,         
% where G is the shear modulus)                                                
% full 3-point integration                                                     
% --------------------------------------------------------------------------   
% Note:                                                                        
% The sparsity pattern of the matrix is determined from the element            
% connectivity data assuming that the element matrix is full.                  
% Since this case the  material model is linear isotropically elastic          
% and the FE mesh is  uniform there exist some zeros.                          
% Since the removal of those zero elements is trivial                          
% but the reconstruction of the current sparsity                               
% pattern is impossible from the sparsified structure without any further      
% knowledge of the element connectivity, the zeros are retained in this file.  
% ---------------------------------------------------------------------------  
%END DESCRIPTION                                                               
%                                                                              
% |