JGD_GL6/GL6_D_10
Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
Name |
GL6_D_10 |
Group |
JGD_GL6 |
Matrix ID |
1982 |
Num Rows
|
163 |
Num Cols
|
341 |
Nonzeros
|
2,053 |
Pattern Entries
|
2,053 |
Kind
|
Combinatorial Problem |
Symmetric
|
No |
Date
|
2008 |
Author
|
P. Elbaz-Vincent |
Editor
|
J.-G. Dumas |
Structural Rank |
158 |
Structural Rank Full |
false |
Num Dmperm Blocks
|
2 |
Strongly Connect Components
|
5 |
Num Explicit Zeros
|
0 |
Pattern Symmetry
|
0% |
Numeric Symmetry
|
0% |
Cholesky Candidate
|
no |
Positive Definite
|
no |
Type
|
integer |
SVD Statistics |
Matrix Norm |
1.097220e+01 |
Minimum Singular Value |
2.124319e-17 |
Condition Number |
5.165041e+17
|
Rank |
120 |
sprank(A)-rank(A) |
38 |
Null Space Dimension |
43 |
Full Numerical Rank? |
no |
Download Singular Values |
MATLAB
|
Download |
MATLAB
Rutherford Boeing
Matrix Market
|
Notes |
Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.
From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html
http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev
D_6 Smith Invariants = [ 1:156 ]
D_7 Smith Invariants = [ 1:307 2:3 60:2 ]
D_8 Smith Invariants = [ 1:320 2:1 6:2 12:1 ]
D_9 Smith Invariants = [ 1:217 2:3 ]
D_10 Smith Invariants = [ 1:120 ]
Filename in JGD collection: GL6/D_10.sms
|