JGD_GL6/GL6_D_8
Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
Name |
GL6_D_8 |
Group |
JGD_GL6 |
Matrix ID |
1980 |
Num Rows
|
544 |
Num Cols
|
637 |
Nonzeros
|
6,153 |
Pattern Entries
|
6,153 |
Kind
|
Combinatorial Problem |
Symmetric
|
No |
Date
|
2008 |
Author
|
P. Elbaz-Vincent |
Editor
|
J.-G. Dumas |
Structural Rank |
542 |
Structural Rank Full |
false |
Num Dmperm Blocks
|
2 |
Strongly Connect Components
|
8 |
Num Explicit Zeros
|
0 |
Pattern Symmetry
|
0% |
Numeric Symmetry
|
0% |
Cholesky Candidate
|
no |
Positive Definite
|
no |
Type
|
integer |
SVD Statistics |
Matrix Norm |
1.529840e+01 |
Minimum Singular Value |
5.520564e-31 |
Condition Number |
2.771167e+31
|
Rank |
324 |
sprank(A)-rank(A) |
218 |
Null Space Dimension |
220 |
Full Numerical Rank? |
no |
Download Singular Values |
MATLAB
|
Download |
MATLAB
Rutherford Boeing
Matrix Market
|
Notes |
Differentials of the Voronoi complex of perfect forms of rank 6 mod GL_6(Z),
from Philippe Elbaz-Vincent, Institut Fourier, Grenoble, France.
From Jean-Guillaume Dumas' Sparse Integer Matrix Collection,
http://ljk.imag.fr/membres/Jean-Guillaume.Dumas/simc.html
http://www-fourier.ujf-grenoble.fr/-Informations-personnelles-.html?P=pev
D_6 Smith Invariants = [ 1:156 ]
D_7 Smith Invariants = [ 1:307 2:3 60:2 ]
D_8 Smith Invariants = [ 1:320 2:1 6:2 12:1 ]
D_9 Smith Invariants = [ 1:217 2:3 ]
D_10 Smith Invariants = [ 1:120 ]
Filename in JGD collection: GL6/D_8.sms
|