Janna/ML_Geer
Poroelastic problem (structural problem)
| Name | ML_Geer | 
| Group | Janna | 
| Matrix ID | 2650 | 
| Num Rows | 1,504,002 | 
| Num Cols | 1,504,002 | 
| Nonzeros | 110,686,677 | 
| Pattern Entries | 110,879,972 | 
| Kind | Structural Problem | 
| Symmetric | No | 
| Date | 2012 | 
| Author | C. Janna, M. Ferronato, G. Pini | 
| Editor | T. Davis | 
 
 
| Structural Rank | 1,504,002 | 
| Structural Rank Full | true | 
| Num Dmperm Blocks | 4,502 | 
| Strongly Connect Components | 4,502 | 
| Num Explicit Zeros | 193,295 | 
| Pattern Symmetry | 100% | 
| Numeric Symmetry | 0% | 
| Cholesky Candidate | no | 
| Positive Definite | no | 
| Type | real | 
 
 
| Download | MATLAB
Rutherford Boeing
Matrix Market | 
| Notes | 
Authors: Carlo Janna, Massimiliano Ferronato, Giorgio Pini        
Matrix type: Unsymmetric                                          
# equations:      1,504,002                                       
# non-zeroes:   110,879,972                                       
                                                                  
Problem description: Poroelastic problem (structural problem)     
                                                                  
The matrix ML_Geer has been obtained to find through a Meshless   
Petrov-Galerkin discretization the deformed configuration of an   
axial-symmetric porous medium subject to a pore-pressure drawdown.
                                                                  
Further information can be found in the following papers:         
                                                                  
1) M. Ferronato, A. Mazzia, G. Pini, and G. Gambolati. A meshless 
method for axi-symmetric poroelastic simulations: numerical       
study. International Journal for Numerical Methods in Engineering 
70 (2007), pp. 1346-1365.                                         
                                                                  
2) M. Ferronato, C. Janna and G. Pini. A generalized Block FSAI   
preconditioner for unsymmetric indefinite matrices. Journal of    
Computational and Applied Mathematics (2012), submitted. |