Group ML_Graph
Group Description |
ML_Graph: adjacency matrices from machine learning datasets, Olaf Schenk. The following adjacency matrices were used in the numerical experiments in: D. Pasadakis, C. L. Alappat, O. Schenk, and G. Wellein, "K-way p-spectral clustering on Grassmann manifolds," 2020. [Online]. Available: https://arxiv.org/abs/2008.13210 ------------------------------------------------------------------------------- Graph Creation ------------------------------------------------------------------------------- For all the graphs in the folder, for $n$ data points, the connectivity matrix $G \in \mathbb{R}^{n\times n}$ is created from a k nearest neighbors routine, with k set such that the resulting graph is connected. The similarity matrix $S \in \mathbb{R}^{n\times n}$ between the data points is defined as \begin{equation} s_{ij} = \max\{s_i(j), s_j(i)\} \;\; \text{with}\; s_i(j) = \exp (-4 \frac{\|x_i - x_j \|^2}{\sigma_i^2} ) \end{equation} with $\sigma_i$ standing for the Euclidean distance between the $i$th data point and its nearest k-nearest neighbor. The adjacency matrix $W$ is then created as \begin{equation} W = G \odot S. \end{equation} Besides the adjacency matrices $W$, the node labels for each graph are part of the submission. If the graph has c classes, the node labels are integers in the range 0 to c-1. ------------------------------------------------------------------------------- Description of matrices ------------------------------------------------------------------------------- For a more detailed description of the datasets, and references of the sources the datasets were obtained from, see the paper cited in the beginning of this description. Graphs from various machine learning datasets Name Neighbours Nodes Edges Classes har_10NN 10 10299 75868 6 indianpines_10NN 10 9144 62328 8 JapaneseVowels_10NN 10 9961 65572 9 worms20_10NN 10 20055 120413 20 optdigits_10NN 10 5620 39825 10 Vehicle_10NN 10 846 5447 4 mfeatkarhunen_10NN 10 2000 13834 10 mfeatfactors_10NN 10 2000 13721 10 mfeatmorphological_10NN 10 2000 11416 10 mfeatpixel_10NN 10 2000 13966 10 mfeatzernike_10NN 10 2000 13707 10 semeion_10NN 10 1593 11113 10 mice_10NN 10 1077 6742 8 yeast_30NN 30 1484 31175 12 cnae9_10NN 10 1080 9139 9 dermatology_5NN 5 366 1220 6 iris_30NN 30 150 2759 3 Ecoli_10NN 10 336 2280 8 Binaryalphadigs_10NN 10 1404 9696 36 Glass_10NN 10 214 1493 6 collins_15NN 15 1000 8246 30 micromass_10NN 10 571 4834 20 breasttissue_10NN 10 106 706 6 Plants_10NN 10 1600 10965 100 plantsmargin_12NN 12 1600 12741 100 plantstexture_10NN 10 1599 10602 100 Spectro_10NN 10 531 3711 48 Graphs from image classification problems. The RGB values are normalised in the interval [0,1]. Name Neighbours Nodes Edges Classes usps_norm_5NN 5 11000 40556 10 Fashion_MNIST_norm_10NN 10 10000 79152 10 kmnist_norm_10NN 10 10000 78466 10 k49_norm_10NN 10 38547 309079 49 mnist_test_norm_10NN 10 10000 72800 10 YaleB_10NN 10 2414 8568 10 umistfacesnorm_10NN 10 575 3495 20 YaleA_10NN 10 165 1134 10 Olivetti_norm_10NN 10 400 2828 40 |
---|
Displaying collection matrices 21 - 36 of 36 in total